PiQASO

Post-Quantum Cryptography As-a-Service for Common Transmission Systems and Infrastructures

Duration 01.01.2025 - 31.12.2027, Funded by EU - DIGITAL-ECCC-2024-DEPLOY-CYBER-06-PQCINDUSTR

Show project description Hide project description

The PiQASO project addresses the urgent need for quantum-resistant cryptographic solutions to secure critical infrastructures and data in the face of advancing quantum computing threats. As quantum capabilities mature, existing cryptographic methods risk becoming obsolete, jeopardizing the confidentiality and integrity of sensitive information. PiQASO’s primary goal is to deliver agile, scalable, and practical Post-Quantum Cryptography (PQC) solutions that seamlessly integrate into legacy systems without requiring additional specialized hardware.

The project introduces “PQC as a Service” (PQaaS), providing operational implementations of NIST-standardized algorithms like Dilithium, FALCON, and SPHINCS+. PiQASO enables robust encryption, authentication, and identity management across diverse industries, offering flexibility through crypto agility—adaptation to evolving cryptographic needs. The project emphasizes the secure execution of PQC, incorporating programmable accelerators to optimize performance while maintaining resistance to physical and side-channel attacks.

BIBA will provide a comprehensive demonstration scenario - a safeguarding aviation testing infrastructure. It will show how a Distributed Hardware-in-the-Loop (HIL) testing in aerospace will benefit from secure communication channels fortified by PQC, ensuring real-time responsiveness (<100ms) and protecting intellectual property. Through these advancements, PiQASO aims to establish a sustainable path toward quantum-secure critical systems, fostering trust and resilience in a rapidly evolving technological landscape.

Contact persons

Keywords

Interoperability, Telecommunications and IT, Cyber security

LAMAsense

INTEK - LAMAsense / Entwicklung eines digitalen Zwillings für die Instandhaltung und einer Service-Plattform als Nutzerschnittstelle

Duration 01.01.2025 - 31.12.2026, Funded by BMWK

Show project description Hide project description

Contact person

Keywords

Digitalisation, Agriculture, Machine learning / artificial intelligence, Digital twin

Projektlogo Entwicklung eines Qualitätsregelkreis-basierten Assistenzsystems zur nachhaltigen Betriebsmittelplanung für die manuelle und hybride Montage

NaBeMi

Development of a Quality Control Loop-Based Assistance System for Sustainable Resource Planning in Manual and Hybrid Assembly

Duration 01.11.2024 - 31.10.2026, Funded by BMWK / IGF
Download PDF-Flyer

Show project description Hide project description

The NaBeMi research project addresses the growing importance of sustainability in consumer behavior and the challenges SMEs face in achieving sustainability goals in production. The aim of the project is to develop a methodology for sustainable resource planning that considers environmental, economic and social aspects. A web-based support system supports the resource planning process for manual and hybrid assembly systems. The methodology integrates three quality control loops to resolve conflicts between traditional and sustainability objectives, enabling comprehensive resource planning. This approach analyzes trade-offs and ensures high quality planning.

Contact person

Keywords

System development and planning, Sustainability, Manufacturing industry, Assistance systems

Projektlogo XR-basierter digitaler Assistent zur Stärkung der Fähigkeiten für die Mensch-Roboter-Zusammenarbeit in sicherheitskritischen industriellen Anwendungen
Project website

EMPOWER

XR-based Digital Assistant Enabling Skills Empowerment for Human-Robot Co-Working in safety-critical industrial Applications

Duration 01.10.2024 - 30.06.2025, Funded by EU - MASTER-XR Open Call

Show project description Hide project description

EMPOWER aims to revolutionize workplace safety through cutting-edge XR technologies. With a clear market need and a strong value proposition, EMPOWER is confident in the ability to drive significant improvements in safety and operational efficiency across various high-risk industries. EMPOWER will contribute to the implementation of MASTER platform tools by promoting a novel pedagogical / training approach, training in real industrial applications, to be implemented in the form of an XR-based digital assistant focusing on the imperative topics: safety and ergonomics in safety-critical industrial workplaces such as HRC assembly processes. The outcomes of EMPOWER are dedicated to the training of human workforce (unskilled and advanced human operators, experts) in industrial environments to ensure the assistance and enhancement of their learning experience towards these topics in human-robot interactive applications. The envisaged modular XR-based tool comprises sub-modules for real-time visualization, digital assistant, HRC knowledge base, data gathering and safety and ergonomics assessment purposes. The modularity approach will enable the adaptability of the developed tool addressing comparable safety-critical scenarios (e.g. HRC welding processes).

Contact persons

Keywords

Human-technology interaction, Process optimisation and control, Research and development, Training & qualification, AR / VR / Speech

Projektlogo Entwicklung einer LLM-Pipeline zur Verarbeitung und Umwandlung natürlicher Sprachbefehle zu kontextabhängigen Roboterbefehlen

La2-Mo2

Development of an LLM pipeline for processing and transforming natural language commands into context-dependent robot commands

Duration 01.10.2024 - 30.09.2026, Funded by BMWK
Download PDF-Flyer

Show project description Hide project description

The assembly industry faces increasing product variety and customization, which demands production flexibility, complicating Cobot automation, especially for SMEs. Despite Cobot market growth, frequent reconfiguration remains a challenge. Natural language programming could simplify this, but current models lack contextual understanding and precision.

The La2-Mo2 project aims to develop a system that uses LLMs for programming Cobots through natural language. By interpreting spoken instructions and converting them into precise robot commands, the system will make Cobot programming more accessible, reducing complexity and increasing flexibility, particularly benefiting SMEs in assembly processes.

Contact persons

Keywords

Robotics and automation, Human-technology interaction, Manufacturing industry, Assistance systems, Machine learning / artificial intelligence

Direct to ...

Events:
Transparent Supply Chains
February 25, 2025, online
BIBA with LogDynamics at the LogisticsConnect Congress Fair
March 6th-7th, 2025, Bremen
Cobot from the BIBA at the Hannover Messe
March 31st- April 4th, 2025, Hannover
Suppy Chain Day 2025
April 10, 2025, BIBA

More events